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A Appendix: Applications of active inference 1

Abstract
This white paper lays out a vision of research and development in the field of

artificial intelligence for the next decade (and beyond). Its denouement is a cyber-
physical ecosystem of natural and synthetic sense-making, in which humans are inte-
gral participants—what we call “shared intelligence”. This vision is premised on active
inference, a formulation of adaptive behavior that can be read as a physics of intel-
ligence, and which inherits from the physics of self-organization. In this context, we
understand intelligence as the capacity to accumulate evidence for a generative model of
one’s sensed world—also known as self-evidencing. Formally, this corresponds to maxi-
mizing (Bayesian) model evidence, via belief updating over several scales: i.e., inference,
learning, and model selection. Operationally, this self-evidencing can be realized via
(variational) message passing or belief propagation on a factor graph. Crucially, active
inference foregrounds an existential imperative of intelligent systems; namely, curiosity
or the resolution of uncertainty. This same imperative underwrites belief sharing in
ensembles of agents, in which certain aspects (i.e., factors) of each agent’s generative
world model provide a common ground or frame of reference. Active inference plays
a foundational role in this ecology of belief sharing—leading to a formal account of
collective intelligence that rests on shared narratives and goals. We also consider the
kinds of communication protocols that must be developed to enable such an ecosys-
tem of intelligences and motivate the development of a shared hyper-spatial modeling
language and transaction protocol, as a first—and key—step towards such an ecology.
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1 Introduction
This white paper presents active inference as an approach to research and development in
the field of artificial intelligence (AI), with the aim of developing ecosystems of natural and
artificial intelligences. The path forward in AI is often presented as progressing from sys-
tems that are able to solve problems within one narrow domain—so-called “artificial narrow
intelligence” (ANI)—to systems that are able to solve problems in a domain general-manner,
at or beyond human levels: what are known as “artificial general intelligence” (AGI) and “ar-
tificial super-intelligence” (ASI), respectively [1]. We believe that approaching ASI (or, for
reasons outlined below, even AGI) likely requires an understanding of networked or collec-
tive intelligence. Given the growing ubiquity of things like autonomous vehicles, robots, and
arrays of edge computing devices and sensors (collectively, the internet of things), the zenith
of the AI age may end up being a distributed network of intelligent systems, which interact
frictionlessly in real time, and compose into emergent forms of intelligence at superordinate
scales. The nodes of such a distributed, interconnected ecosystem may then be human users
as well as human-designed artifacts that embody or implement forms of intelligence.

In order to enable such ecosystems, we must learn from nature. While acknowledging
neuroscience as a key inspiration for AI research, we argue that we must move beyond
brains, and embrace the active and nested characteristics of natural intelligence, as it occurs
in living organisms and as it might be implemented in physical systems more generally. In
our view, this entails asking not only “How does intelligence present to us, as researchers?”
but also, crucially, the complementary question “What is it that intelligence must be, given
that intelligent systems exist in a universe like ours?”

To address this challenge, we foreground active inference, which combines the virtues of
a “first-principles,” physics-based approach to AI with Bayesian formulations, thus reframing
and, in some key respects, extending the methods found in Bayesian approaches to machine
learning, which provide the foundations of state-of-the-art AI systems. Active inference en-
tails an explicit mechanics of the beliefs of agents and groups of agents—known as Bayesian
mechanics [2, 3]—which is uniquely suited to the engineering of ecosystems of intelligence, as
it allows us to write down the dynamics of sparsely coupled systems that self-organize over
several scales or “levels” [4–7]. We offer a formal definition of intelligence for AI research,
as the capacity of systems to generate evidence for their own existence. This encompasses
cognition (i.e., problem-solving via action and perception) and curiosity, as well as the ca-
pacity for creativity, which underwrites the current interest in generative AI [8]. We argue
that the design of intelligent systems must begin from the physicality of information and
its processing at every scale or level of self-organization. The result is AI that “scales up”
the way nature does: by aggregating individual intelligences and their locally contextualized
knowledge bases, within and across ecosystems, into “nested intelligences”—rather than by
merely adding more data, parameters, or layers to a machine learning architecture.

We consider the question of how to engineer ecosystems of AI using active inference, with
a focus on the problem of communication between intelligent agents, such that shared forms
of intelligence emerge, in a nested fashion, from these interactions. We highlight the impor-
tance of shared narratives and goals in the emergence of collective behavior, and how active
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inference helps account for this in terms of sharing (aspects of) the same generative model.
We close our discussion with a sketch of stages of development for AI using the principles
of active inference. Our hypothesis is that taking the multi-scale and multi-level aspects of
intelligence seriously has the potential to be transformative with respect to the assumptions
and goals of research, development, and design in the field of AI, with potentially broad
implications for industry and society: that technologies based on the principles described in
this paper may be apt to foster the design of an emergent ecosystem of intelligences spanning
spatial and cognitive domains (a hyper-spatial web).

2 A first-principles approach to multi-scale artificial in-
telligence

The field of artificial intelligence has from the outset used natural systems, whose stunning
designs have been refined over evolutionary timescales, as templates for its models. Neuro-
science has been the most significant source of inspiration, from the McCulloch-Pitts neuron
[9] to the parallel distributed architectures of connectionism and deep learning [10, 11], to
the contemporary call for “Neuro-AI” as a paradigm for research in AI, in particular machine
learning [12]. Indeed, the definitive aspect of deep learning inherits from the hierarchical
depth of cortical architectures in the brain [13]. More recently, machine learning has come,
in turn, to influence neuroscience [14–16].

Academic research as well as popular media often depict both AGI and ASI as sin-
gular and monolithic AI systems, akin to super-intelligent, human individuals. However,
intelligence is ubiquitous in natural systems—and generally looks very different from this.
Physically complex, expressive systems, such as human beings, are uniquely capable of feats
like explicit symbolic communication or mathematical reasoning. But these paradigmatic
manifestations of intelligence exist along with, and emerge from, many simpler forms of in-
telligence found throughout the animal kingdom, as well as less overt forms of intelligence
that pervade nature.

Examples of “basal cognition” abound—and often involve distributed, collective forms
of intelligence. Colonies of slime molds, for example, can—as a group—navigate two-
dimensional spatial landscapes, and even solve mathematical problems that are analytically
intractable [17]. Certain forms of cognition and learning are (at least arguably) observable in
plants [18], and we know that plants grow in a modular fashion, as a structured community
of tissues that self-organize into a specific configuration [19]. Communication between organ-
isms is often mediated by network structures, which themselves consist of other organisms;
for instance, it is known that mycorrhizal networks are able to facilitate communication,
learning, and memory in trees [20]. Mobile groups of schooling fish can, as a collective, sense
light gradients over a wide spacetime window, even as the individuals that comprise the
group can only detect local light intensity [21]. Perhaps most germanely, in morphogenesis
(i.e., pattern formation in multicellular organisms), the communication of collectives of cells
implements a search for viable solutions in a vast problem space of body configurations [22–
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24]. This is not merely a metaphorical extension or use of the word “intelligence,” as it is no
different, at its core, from our experience of navigating three-dimensional space [6].

Thus, at each physical spatiotemporal scale of interest, one can identify systems that
are competent in their domain of specialization, lending intelligence in physical systems a
fundamentally multi-scale character [25, 26]. Observation of nature suggests, moreover, that
simpler and more complex forms of intelligence are almost always related compositionally:
appreciably intelligent things tend to be composed of systems that are also intelligent to
some degree. Most obviously, the intelligence of individual human beings, to the extent
that it depends on the brain, implements the collective intelligence of neurons—harnessed
by many intervening levels of organization or modularity, and subserved by organelles at the
cellular level. This communal or collective aspect of intelligence is reflected in the etymology
of “intelligence”—from inter- (which means between) and legere (which means to choose or
to read)—literally inter-legibility, or the ability to understand one another.

Since intelligence at each scale supervenes on, or emerges from, simpler (though still
intelligent) parts, the multi-scale view of natural intelligence implies not a mysterious infinite
regress, but a recursive, nested structure in which the same functional motif (the action-
perception loop) recurs in increasingly ramified forms in more complex agents [27]. The
emergence of a higher-level intelligence—from the interaction of intelligent components—
depends on network structure (e.g., the organization of the nervous system, or communication
among members in a group or population) and sparse coupling (i.e., the fact that things are
defined by what they are not connected to [28]), which together often lead to functional
specialization among the constituents [29].

But how do we engineer systems like these? Can we leverage the fundamental organizing
principles that underwrite the operation of intelligence in nature, and separate them from
the contingent details of particular biological systems? We argue that this can be achieved
by moving away from asking, “How does intelligence present to us, as researchers?”, which
focuses on empirical descriptive adequacy and “reasoning by analogy” (e.g., the Turing test or
imitation game [30]). Instead, we must ask the more fundamental question: “What is it that
intelligence must be, given that intelligent systems exist in nature?” Such an approach aims
to deduce fundamental properties of intelligence from foundational considerations about the
nature of persisting physical systems (i.e., “first principles”).

This approach has its origins in the cybernetics movement of the 1940s, which set out
to describe the general properties of regulatory and purposive systems—that is, properties
not tied to any given specific architecture—and from which we draw now commonplace
principles of system design, such as feedback and homeostasis [31, 32]. Perhaps the most
well-known example of this is the good regulator theorem [33], later developed as the internal
model principle in control theory [34], according to which systems that exist physically must
contain structures that are homomorphic to whatever environmental factors they are capable
of controlling.

Contemporary developments in the statistical mechanics of far-from-equilibrium systems
(and in particular, multi-scale, living systems) allow us to formalize these insights—of early
cybernetics—as a physics of self-organization, which enables the study of intelligence itself as
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a basic, ubiquitous, physical phenomenon.1 This has been called a physics of sentient systems ;
where “sentient” means “responsive to sensory impressions” [38, 39]. More specifically, we
argue that one can articulate the principles and corollaries of the core observation that
intelligent systems (i.e., agents) exist in terms of a “Bayesian mechanics” that can be used
to describe or simulate them [2, 3].

We note that physical implementation is the ultimate constraint on all forms of engineered
intelligence. While this claim might sound trivial, it has been a core locus of recent progress in
our understanding of the physics of information itself. According to Landauer’s principle [40–
43], there is an energy cost to irreversibly read-write any information in a physical medium.
Thus, the physicality of information and its processing at every scale of self-organization
should be accounted for in the design of intelligent systems. Apart from being principled,
forcing models to respect constraints or conservation laws—of the kind furnished by physical
implementation—often improves their performance or even enables unique capabilities.2 Our
core thesis is that all of this is naturally accommodated by an approach to AI grounded in
the physics of intelligence.

3 Active inference

3.1 “Model evidence is all you need”

We approach the challenges just outlined from the perspective of active inference, a first-
principles or physics-based approach to intelligence that aims to describe, study, and design
intelligent agents from their own perspective [54]. Active inference shares the same foun-
dations as quantum, classical, and statistical mechanics, and derives a scale-free theory of
intelligence by adding an account of the individuation of particular things within their envi-
ronments [38].

We begin with the observation that individual physical objects can be defined by the
typical absence of influence of some parts of the universe on others (for example, air temper-
ature directly impacts my skin, but not my internal organs). In sparse causal networks, some
nodes act as informational bottlenecks that serve both as mediating channels and as (prob-
abilistic) boundaries, on which the variability of states on either side is conditioned. The
persistence of such stable boundaries in a changing world (i.e., away from thermodynamic

1Researchers in AI have often borrowed tools from physics, such as Hamiltonian mechanics, to finesse
the inference problems that they face, leading to tools like the Hamiltonian Monte Carlo algorithm, which
massively speeds up certain kinds of inferential problem-solving [35]. Conversely, AI has been used in physics,
chemistry, and biochemistry to great effect, allowing us to simulate the containment of plasma in Tomahawk
nuclear fusion reactors [36], or predict the ways in which proteins will fold, as the famous AlphaFold system
enables [37]. What we have in mind, however, is not to borrow techniques or formalisms from physics to solve
the problem of intelligent systems design, or to use AI to help finesse problems from physics; but rather, in
a complementary fashion, to treat the study of intelligence itself as a chapter of physics.

2Simulated neural networks, for example, often overfit and fail to generalize if they are not forced to
learn compressed representations of their inputs [44–47]. Relatedly, ubiquitous forms of regularization can
be motivated from physical considerations about the finite bandwidth of neurons [48], and schemes such as
predictive coding and sparse coding by considerations about efficient signal transmission [47, 49–53].
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equilibrium) is possible only to the extent that the boundary conditions can be predicted
and controlled, leveraging an implicit statistical model—a generative model of how they are
caused by external changes.3

To exist as an individuated thing is thus to gather observational evidence for such a model
(“self-evidencing” [55]). This “model evidence” can be scored by a scalar value that conveys
the degree to which some observations conform to (i.e., are predictable from) the model. To
account for perception, one can update variables in order to maximize model evidence (e.g.,
update beliefs to match the data). To account for learning, one can update parameters in
order to maximize model evidence (e.g., update models to match the data). To account for
action, one can select actions in order to maximize (expected) model evidence (assuming
that the model encodes preferences in terms of prior beliefs) [39, 56]. From this perspective,
model evidence is the only thing that needs to be optimized.

Importantly, model evidence can be approximated in a form that has interesting de-
compositions, into quantities that map onto distinct facets of intelligence. For instance,
an upper bound on the model evidence—called variational free energy [57]—can always be
written as accuracy minus complexity. When a system minimizes this bound, in so doing, it
automatically maximizes the predictive accuracy of its model while minimizing its complex-
ity (implementing a version of Occam’s razor). This means that self-evidencing mandates
an accurate account of sensory exchanges with the world that is minimally complex, which
serves to limit overfitting and poor generalization [58].

Active inference builds on these insights. If inference entails maximizing accuracy while
minimizing complexity, it follows that self-evidencing should minimize the inaccuracy and
complexity that is expected following upon a course of action. It transpires that expected
complexity is exactly the same quantity minimized in optimal control theory [59, 60]; namely,
risk, while expected inaccuracy is just the ambiguity inherent in the way we sample data
(e.g., resolved by switching the lights on in a dark room). Perhaps more interestingly, the
ensuing expected free energy can be rearranged into expected information gain and expected
value, where value is just the (log) preference for an outcome. This result captures exactly
the dual aspects of Bayes optimality; namely, optimal Bayesian experimental design [61–63]
and decision theory [64]. In essence, it favors choices that ensure the greatest resolution of
uncertainty, under the constraint that preferred outcomes are realized. In other words, it
mandates information and preference-seeking behavior, where one contextualizes the other.
The ensuing curiosity or novelty-seeking thus emerges as an existential imperative [61, 62,
65–68]—to the extent that one could say that to be intelligent is (in part) to be curious, and
to balance curiosity against preferences or reward in an optimal fashion.

Crucially, the approach to existence as modeling just outlined can be applied recursively,
in a nested fashion, to systems as well as their components, providing the foundations for
mathematical theories of collective intelligence at any scale, from rocks to rockstars.4 Indeed,

3In the context of scientific modeling, a statistical model is a mathematical object that encodes the way
that things change, relative to the way that other things change. Formally, the structure that encodes such
contingencies is called a joint probability distribution. This is the generative model.

4Even rocks, while not agents per se, track the state of their environment: for instance the interior of
a rock “knows” that the environment must be well below the melting point of rock (albeit not under that
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if existing in a characteristic way just is soliciting or generating evidence for our existence,
then everything that exists can be described as engaging in inference, underwritten by a
generative model. Dynamics quite generally can then be cast as a kind of belief updating in
light of new information: i.e., changing your mind to accommodate new observations, under
the constraint of minimal complexity.

3.2 AI designed for belief updating

The principles of natural design that we’ve reviewed suggest that next-generation AI sys-
tems must be equipped with explicit beliefs about the state of the world; i.e., they should
be designed to implement, or embody, a specific perspective—a perspective under a gener-
ative model entailed by their structure (e.g., phenotypic hardware) and dynamics. (Later,
we will suggest that efforts should also be directed towards research and development of
communication languages and protocols supporting ecosystems of AI.)

A formal theory of intelligence requires a calculus or mechanics for movement in this space
of beliefs, which active inference furnishes in the form of Bayesian mechanics [2]. Mathe-
matically, belief updating can be expressed as movement in an abstract space—known as a
statistical manifold—on which every point corresponds to a probability distribution [70–75].
See Figure 1. This places constraints on the nature of message passing in any physical or
biophysical realization of an AI system [57, 76–79]: messages must be the sufficient statistics
or parameters of probability distributions (i.e., Bayesian beliefs). By construction, these
include measures of uncertainty. Any variable drawn from a distribution (e.g., the beliefs
held by agents about themselves, their environment, and their possible courses of action) are
associated with a measure of confidence, known as precision or inverse variance. Thus, intel-
ligent artifacts built according to these principles will appear to quantify their uncertainty
and act to resolve that uncertainty (as in the deployment of attention in predictive coding
schemes [80–84]). Uncertainty quantification is particularly important when assessing the
evidence for various models of data, via a process known as structure learning or Bayesian
model comparison [85–89].

There are several types of uncertainty at play when learning from data. First, there
may be irreducible noise in the measurement process itself. Examples of such noise include
pixel blur in images. Second, the values of the hidden variables being estimated from data
may be ambiguous (e.g., “Is the image I’m viewing of a duck or a rabbit?” or “It looks like
rain: should I bring an umbrella?”). Third, there may be noise in the model of the function
being learned (e.g., “What do rabbits look like? How do hidden variables map to data?”).
Overcoming and accounting for these different types of uncertainty is essential for learning.

Non-probabilistic approaches to AI encounter these forms of uncertainty but do not
represent them explicitly in the structure or parameters of their functions. These methods
thus hope to learn successfully without quantifying uncertainty, which is variably feasibile
depending on the specific data and output being learned. AI systems that are not purpose-

English description). As systems become more elaborate, they can represent more about the things to which
they couple [69].
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built to select actions in order to reduce uncertainty in an optimal manner will struggle to
assign confidence to their predictions. Further, as users of these kinds of AI systems, we
have no way of knowing how confident they are in their assignments of probability—they
are “black boxes”.

Taken together, the probabilistic approach provides a normative theory for learning—
starting from the first principles of how AI should deal with data and uncertainty. The
downside to probabilistic modeling is that it induces severe computational challenges. Specif-
ically, such models must marginalize all the variables in the model in order to arrive at exact
“beliefs” about a given variable. Thus, the main computational task in probabilistic inference
is marginalization, whereas in traditional AI it is the optimization of parameters. As such,
a focus on optimization per se in contemporary AI research and development may be mis-
placed to some extent. Current state-of-the-art AI systems are essentially general-purpose
optimization machines, built to handle a specific task domain. But optimization in and of
itself is not the same as intelligence. Rather, in an intelligent artifact, optimization should be
a method in the service of optimizing our beliefs about what is causing our data. Fortunately,
there are mathematical tricks, such as variational inference, which convert the (intractable)
problem of marginalization into a (tractable) optimization problem, allowing probabilistic
approaches to utilize the wealth of techniques available for optimization while retaining the
benefits of uncertainty quantification.

3.3 Comparison to current state-of-the-art approaches

Active inference is a very general formulation of intelligence, understood as a self-organizing
process of inference. Yet the generality of the formulation is integrative, rather than adver-
sarial or exclusive: it formally relates or connects state-of-the-art approaches (e.g., it has
been shown that all canonical neural networks minimize their free energy; [90]), showcasing
their strengths, enabling cross-pollination, and motivating refinements.

3.3.1 Managing complexity

In the context of machine learning, the complexity term derivable from model evidence
(a.k.a., information gain) is especially interesting [87], since it means that active inference
puts predictive accuracy and complexity on an equal footing. In brief, self-evidencing bakes
complexity into the optimization of beliefs about the world in a way that automatically
finesses many problems with machine learning schemes that focus solely on accuracy [91].
To take a salient example from recent discussions, many of the considerations that seem to
motivate non-generative approaches—to learning world models [92]—stem from considering
only the likelihood in generative models, rather than model evidence or marginal likelihood—
whereas the inclusion of complexity encourages a model to find parsimonious explanations
of observations, abstracting from useless detail. In other words, accuracy comes at a (com-
plexity) cost, which must be discounted.

Complexity minimization also speaks to the importance of dimensionality reduction and
coarse-graining as clear ways to learn the structure of generative models [85]. This is moti-
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as parameters of
a probability distribution
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belief t + 2
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belief t

Figure 1: Belief updating on a statistical manifold.

vated by the intuition that, while sensor data itself is extremely high-dimensional, noisy, un-
predictable, ambiguous, and redundant, there is a description of the data in terms of its gen-
erating causes (e.g., the world of objects with defined properties) that is lower-dimensional,
more predictable, and less ambiguous. Such a description furnishes a compressed, and there-
fore more efficient, account of the data at hand. Thus, while scaling up data spaces, one
may have to scale down the number of latent states generating those data, to the extent that
doing so does not sacrifice accuracy.

Relatedly, active inference provides a promising framework for learning representations
in which distinct generative factors are disentangled [93], via the sensorimotor contingencies
associated with controllable latent factors [94–96]. Low-dimensional disentangled represen-
tations, in addition to being useful for an AI system itself in achieving its own ends, are
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more explainable and human-interpretable than generic latent representations.
Minimizing complexity (i.e., compression) points to a direction of travel to the Holy

Grail of a generic and robust AI; a move from “big data” to “smart data” or frugal data
sampling. This has important implications for hardware and energy efficiency. Because the
complexity cost has an accompanying thermodynamic cost—via Landauer’s principle and
the Jarzynski equality [42]—there is a lower bound on the thermodynamic cost of any belief
updating that can, even in principle, be realized with the right updating scheme. Using
active inference, belief updating can be implemented with biomimetic efficiency, without the
need for traditional, GPU-based high-performance computing and accompanying costs.

3.3.2 Reinforcement learning and active inference

State-of-the-art AI designed for action selection typically implements reinforcement learning,
a set of methods for maximizing the expected sum of rewards under a sequence of actions.
From a Bayesian perspective, however, curiosity and exploration are as fundamental to
intelligence as maximizing reward. Specifically, the epistemic, exploratory, curiosity-driven
aspect of intelligence motivates actions expected to reduce uncertainty in the variables and
parameters that define your model; which, in the active inference formulation, corresponds
to inference and learning, respectively [61, 62, 65–68].

In line with the above discussion of self-evidencing, rather than select actions that max-
imize some arbitrary state-dependent reward (or equivalently, minimize an arbitrary cost
function), an intelligent system ought to generate observations or sensory data consistent
with its characteristic (i.e., preferred) exchanges with the sensed world, and thus with its
own continued existence. That is, an intelligent agent ought to maximize the evidence for
its generative model. Active inference thereby generalizes the notion of reward, and labels
every encountered outcome (and implicitly every latent state) in terms of how likely it is
that “this would happen to me”. This is scored in terms of prior preferences over outcomes,
which are part of the generative model. Preferences over some kinds of outcomes are precise
(e.g., not being eaten or embarrassed), others less so (“I prefer coffee in the morning, but tea
is nice”). To summarize, preferences provide constraints that define the “kind of thing I am,”
with more precise preferences playing a similar role, for example, to the “intrinsic costs” in
the actor-critic system proposed in [92].

In this view, Bayesian reinforcement learning is a special case of active inference, in which
the preference for all outcomes is very imprecise—apart from one privileged outcome called
reward, for which there is a very precise preference. The perspective from active inference
moves our notion of intelligence away from a monothematic reward optimization problem,
towards a multiple-constraint-satisfaction problem, where the implicit ‘satisficing’ [97] just
is self-evidencing.

3.3.3 Multi-scale considerations

Another key difference concerns the multi-scale architecture of active inference. First, active
inference commits to a separation of temporal scales, which allows it to finesse key issues in
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AI research. On the present account, learning is just slow inference, and model selection is
just slow learning. All three processes operate in the same basic way, over nested timescales,
to maximize model evidence.

Second, active inference predicts, and provides a formalism for describing, the multi-scale
character of intelligence in nature; see also [98]. Although this has generally not been a focus
of research in machine learning, work in the field consonant with this perspective includes
the complex internal structure of LSTM cells [91], the repetition of the split-transform-
merge strategy across scales in the ResNeXt architecture [99], capsule networks [100], in
which individually complex nodes engage in a form of self-organization, the Thousand Brains
theory of the cooperation of cortical columns to produce global representations [101], or the
perspective on restricted Boltzmann machines as products of experts [102].

3.4 Shared narratives

We have noted that intelligence as self-evidencing is inherently perspectival, as it involves
actively making sense of and engaging with the world from a specific point of view (i.e.,
given a set of beliefs). Importantly, if the origins of intelligence indeed lie in the partitioning
of the universe into subsystems by probabilistic boundaries, then intelligence never arises
singly but always exists on either side of such a boundary [103, 104]. The world that one
models is almost invariably composed of other intelligent agents that model one in turn.

This brings us back to the insight that intelligence must, at some level, be distributed
over every agent and over every scale at which agents exist. Active inference is naturally
a theory of collective intelligence. There are many foundational issues that arise from this
take on intelligence; ranging from communication to cultural niche construction: from theory
of mind to selfhood [103–107]. On the active inference account, shared goals emerge from
shared narratives, which are provided by shared generative models [108]. Furthermore—on
the current analysis—certain things should then be curious about each other.

The importance of perspective-taking and implicit shared narratives (i.e., generative mod-
els or frames of reference) is highlighted by the recent excitement about generative AI [8], in
which generative neural networks demonstrate the ability to reproduce the kinds of pictures,
prose, or music that we expose them to. Key to the usage of these systems is a dyadic inter-
action between artificial and natural intelligence, from the training of deep neural networks
to the exchange of prompts and generated images with the resulting AI systems, and the
subsequent selection and sharing of the most apt “reproductions” among generated outputs.5
In our view, a truly intelligent generative AI would then become curious about us—and
want to know what we are likely to select. In short, when AI takes the initiative to ask
us questions, we will have moved closer to genuine intelligence, as seen through the lens of
self-evidencing.

5The importance of fluid exchange between artificial and human intelligence in this paradigm is evinced
by the rapidly growing interest in prompt engineering, i.e., an increasingly self-aware and theory-driven
approach to the role that prompts play in co-creating the outputs of these types of systems [109], which has
recently been extended to the optimization of text prompts by distinct AI agents [110].
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4 From Babel to binary
Human intelligence and language have co-evolved, such that they both scaffold, and are
scaffolded by, one another [111, 112]. The core functional role of language is to enable
communication and shared understanding: language has been optimized for sharing with
other intelligent creatures (as a language that can be easily passed on reaches further gen-
erations). Language has thus facilitated the emergence of more complex interactions and
shared customs between agents, which has in turn allowed for the emergence of intensive
human collaboration at multiple communal scales [113]. Relatedly, language provides a ref-
erence for how to “carve nature at its joints” (e.g., into objects, properties, and events),
facilitating learning about the world and the way it works. Finally, it has allowed humans
to build an external store of knowledge far beyond the epistemic capacity of any human
individual. Human beings both benefit from—and contribute to—this store of knowledge,
which, like language itself, has co-evolved with our intelligence.

Across cultures, the earliest recorded narratives of our species have emphasized the as-
tounding integrative power of shared communication systems along with their flipside: the
discord and disarray wrought by miscommunication and a lack of mutual understanding.
This is illustrated potently in the biblical story of the Tower of Babel, which tells of a mighty
civilization that attempted to build a glorious city with a tower that rose to the heavens.
These lofty aspirations fell to ruin after a divine disruption that eliminated their common
language, shattering it into a thousand uninterpretable dialects. In their confusion and mis-
comprehension, they were unable to complete the Tower and were thus scattered across the
Earth, forced to survive in the clustered tribes that shared their regional vernacular.

Today, humans cope with a “post-Babel” world via a combination of increasing multilin-
gualism, rallying (for better or worse) behind hegemonic languages like English, and, recently,
increasingly effective machine translation [114]. Digital computers do share a common or
universal machine language (i.e., binary representation). If situations can be represented
adequately in an appropriate machine syntax, they can be subjected to the operations of
mathematical logic, formalized and thereby processed in an unambiguous way. At a higher
level, it may be said that “vectorese” is the universal language of AI, in that vectors (i.e.,
ordered lists of numbers representing a point in an abstract space) constitute the input,
output, and medium of data storage and retrieval for most AI algorithms.

Vectors are analogous to the medium of action potentials in the brain—they are capable of
representing anything we can think of, but nearly all the interesting (and representationally
load-bearing) structure lies in the (learned) transformations and accompanying transition
dynamics of the underlying dynamical system. Often, an output vector space can be con-
sidered as an embedding or transformation of the input space, and mappings among vector
spaces are much like translations among languages. However, vectors themselves may only
provide a base structure or medium (analogous to sound or light) for higher-level languages.

It has been clear from the early days of neural language modeling that vector space
representations can in principle be learned that capture both the semantic and syntactic
regularities implicit in the co-occurrence statistics of natural language corpora [115, 116].
Despite this, we lack anything like a common high-level language that AIs can use to commu-
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nicate with one another and with humans—other than, arguably, human natural languages
themselves, which can be used to interface with AIs via modern language models. The
fact that reinforcement learning agents trained to produce prompts for such models often
produce unintelligible nonsense strings, however [110, 117], shows that even where large lan-
guage models use English, they do not use or understand it in the way humans do; this raises
the question whether natural languages can really play the role of a shared human-machine
language without modification.

Moreover, while the necessity of serializing thought into discrete token sequences for the
purposes of communication helps enforce the kind of sparsity structure that we have argued
is essential to intelligence and complexity itself, a more direct form of information transfer
is also conceivable in which the richness of a latent vector representation (or “thought”) is
directly externalized as a data structure. While current state-of-the-art AI can learn the
language of vector space embeddings, the science of inter-AI communication and shared
latent spaces is in its infancy. For the most part, each AI must learn to carve up the world
from scratch, and is unable to share its knowledge fluidly or update it in collaboration with
other AIs.6

We argue that the future evolution of AI would benefit greatly from a focus on optimiza-
tion for shareability (i.e., gathering evidence for a model of an intrinsically social creature.)
This might take the form of a shared external store of knowledge about how to communi-
cate with relevant others, or a structured communication protocol that can act as the lingua
franca of AI. A general framework that ties together different embedding spaces and inter-AI
messaging over a shared network architecture would, among other things, enable AI agents
to learn to offload certain tasks or predictions to other, more specialized AI agents.

4.1 Active inference and communication

An underlying theme thus far is that intelligence at any scale requires a shared generative
model and implicit common ground. There are many ways to articulate this theme; from
ensemble learning to mixtures of experts [102], from distributed cognition to Bayesian model
averaging [118].

Imagine that someone has locked you in a large dark room. As a self-evidencing and
curious creature, you would be compelled to feel your way around to resolve uncertainty
about your situation. Successive palpations lead you to infer that there is a large animal in
the room—by virtue of feeling what seem to be a tail, a succession of legs, and eventually
a trunk. Your actions generate accumulated evidence for the hypothesis “I am in a room
with an elephant.” Now, imagine an alternative scenario in which you and five friends are
deployed around the same room, and can report what you feel to each other. In this scenario,
you quickly reach the consensus “We are in a room with an elephant.” The mechanics of
belief updating are similar in both scenarios. In the first, you accumulate evidence and

6An important exception is the proliferation of fine-tuned copies of large monolithic pre-trained models
such as BERT. This is not obviously relevant to our interest in (possibly real-time) communication and
mutual updating among persistent, physically situated AI systems, though it may constitute a form of
evolution of populations of AI systems with partially divergent learning histories.
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successively update your posterior belief about latent states. In the second, the collective
assimilation of evidence is parallelized across multiple individuals.

Is the latter equivalent to having one brain with twelve hands? Not quite. The second
kind of belief updating rests upon a shared generative model or hypothesis space that enables
you to assimilate the beliefs of another. For example, you share a common notion of a “trunk,”
a “leg,” and a “tail”—and crucially, you have access to a shared language for communicating
such concepts. Sharing a generative model allows each agent to infer the causes of its
sensations and, crucially, disentangle the causes that are unique to the way the world is
sampled—e.g., “where I am looking”—and causes that constitute the shared environment
(e.g., “what I am looking at”) [4, 104, 119]. Crucially, any dyad or ensemble of self-evidencing
agents will come to share a generative model (or at least some factors of a generative model)
via their interactions [28] (see [120, 121] for numerical experiments in active inference that
illustrate this phenomenon, and Table A.1 for related applications.)

What results is a shared intelligence (i.e., a kind of collective super-intelligence) that
emerges from an ensemble of agents. Heuristically, maximizing model evidence means making
the world as predictable as possible [122, 123]. This is assured if we are both singing from
the same hymn sheet, so to speak—so that I can predict you and you can predict me.
Mathematically, this is evinced as a generalized synchrony between the dynamics on our
respective statistical manifolds [120, 124]. This generalized synchrony (or synchronicity)
is special because it unfolds in a (shared) belief space, meaning it can be read as mutual
understanding: i.e., coming to align our beliefs, via a shared language and a shared generative
model. This sharedness is arguably the basis of culture and underpins the existence of our
civilization. Our challenge, which we take to be a necessary step toward ASI or even AGI,
is to expand the sphere of culture to include artificial agents.

4.2 Belief propagation, graphs, and networks

Operationally, ecosystems of shared intelligence can be described in terms of message passing
on a factor graph [57, 77, 125, 126], a special kind of graph or network in which nodes
correspond to the factors of a Bayesian belief or probability distribution. Factors are just
probabilistic beliefs that one multiplies together to get a joint distribution (i.e., a generative
model). For example, one could factorize beliefs about the latent states of an object into
“what” and “where.” These beliefs jointly specify a unique object in extrapersonal space;
noting that knowing what something is and knowing where it is are largely independent of
each other [127]. The edges of a factor graph correspond to the messages passed among
factors that underwrite belief updating. In the implementations of active inference that we
have been describing, they comprise the requisite sufficient statistics that summarize the
beliefs of other nodes.

Technically, this is useful because for any generative model there is a dual or comple-
mentary factor graph that prescribes precisely the requisite message passing and implicit
computational architecture. In our setting, this architecture has an interesting aspect: we
can imagine the nodes of a vast graph partitioned into lots of little subgraphs. Each of these
would correspond to an agent updating its beliefs via the propagation of internal messages.
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Conversely, external messages would correspond to communication and belief-sharing that
rests upon certain factors being distributed or duplicated over two or more subgraphs (i.e.,
agents or computers). This kind of architecture means that, in principle, any subgraph or
agent can see, vicariously, every observable in the world—as seen through the eyes of an-
other agent. But what is the functional and structural form of the generative model that
underwrites such an architecture?

Taking our lead from human communication, the most efficient (minimum description
length or minimum-complexity) generative model of worldly states should be somewhat
simplified (i.e., coarse-grained), leveraging discrete representations with only as much gran-
ularity as is required to maintain an accurate account of observations [128, 129]. There
are many motivations for this kind of generative model. First, it is continuous with the
approach to thing-ness or individuation described above, according to which individuals are
defined by the sparsity of their interactions. Concepts should evince a sparse structure,
both because they are themselves “things” (and so should have sparse connections to other
similar “things”), and because they are accurate representations of a world characterized by
sparsity. Second, belief updating can, in this case, be implemented with simple linear oper-
ators, of the sort found in quantum computation [26, 130, 131]. Furthermore, this kind of
discretization via coarse-graining moves us into the world of the theory of signs or semiotics
[132, 133], Boolean logic and operators, and the sort of inference associated with abductive
reasoning [134]. Finally, it finesses the form of message passing, since the sufficient statistics
of discrete distributions can be reduced to a list of the relative probabilities of being in the
states or levels of any given factor [135], enabling AI systems to flexibly switch contexts
and acquire knowledge from others quickly and adaptively, based on a repository of shared
representations.

4.3 Intelligence at scale

A subtle aspect of active inference, in this setting, is the selection of which messages to
listen or attend to. In principle, this is a solved problem—in the simple case, each agent
(i.e., subgraph) actively selects the messages or viewpoints that afford the greatest expected
information gain [136].7 The neurobiological homologue of this would be attention: selecting
the newsworthy information that resolves uncertainty about things you do not already know,
given a certain context. There are many interesting aspects of this enactive (action-oriented)
aspect of message passing; especially when thinking about nested, hierarchical structures in
a global (factor) graph. In these structures—and in simulations of hierarchical processing in
the brain—certain factors at higher hierarchical levels can control the selection of messages
by lower levels [137, 138]. This motivates exploration of the multi-scale aspects of shared
intelligence.

The emerging picture is of a message passing protocol that instantiates variational mes-
sage passing on graphs of discrete belief spaces. But what must these messages contain?

7See [122] for more complex cases where agents have preferences for certain kinds of interaction partners,
resulting in the formation of “echo chambers.”
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Clearly, on the present proposal, they must contain vectors of sufficient statistics; but they
also have to identify themselves in relation to the (shared) factors to which they pertain. Fur-
thermore, they must also declare their origin, in much the same way as neuronal populations
in the brain receive spatially addressed inputs from other parts of the brain.

In a synthetic setting, this calls for spatial addressing, leading to the notion of a spatial
message passing protocol and modeling language—of the sort being developed as open stan-
dards in the Institute of Electrical and Electronics Engineers (IEEE) P2874 Spatial Web
Working Group [139]. In short, the first step—toward realizing the kind of distributed,
emergent, shared intelligence we have in mind—is to construct the next generation of mod-
eling and message passing protocols, which include an irreducible spatial addressing system
amenable to vectorization, and allowing for the vector-based shared representation of much
of human knowledge.

5 Ethical and moral considerations
We conclude our discussion of large-scale collective intelligence with a brief discussion of
the relevant areas of ethical discussion—and contention. First, it is important to note that
the kind of collective intelligence evinced by eusocial insects (e.g., ant colonies), in which
most individuals are merely replaceable copies of one another, is not the only paradigm for
shared intelligence—nor is it a suitable one for systems in which individual nodes embody
complex generative models. We believe that developing a cyber-physical network of emergent
intelligence in the manner described above not only ought to, but for architectural reasons
must, be pursued in a way that positively values and safeguards the individuality of people
(as well as potentially non-human persons).

This idea is not new. Already in the late 1990s, before the widespread adoption of the
internet as a communication technology, a future state of society had been hypothesized in
which the intrinsic value of individuals is acknowledged in part because knowledge is valuable
and knowledge and life are inseparable [140]—that is, each person has a distinct and unique
life experience and, as such, knows something that no one else does. This resonates deeply
with our idea that every intelligence implements a generative model of its own existence. The
form of collective intelligence that we envision can emerge only from a network of essentially
unique, epistemically and experientially diverse agents. This useful diversity of perspectives
is a special case of functional specialization across the components of a complex system.

Much discussion in the field of AI ethics focuses on the problem of AI alignment; i.e.,
aligning our value systems with those of hypothetical conscious AI agents, which may possibly
evince forms of super-intelligence [141–143]; for critical discussion, see [144]. This can be
discussed under the broader rubric of the capacity for empathy or sympathy—what one
might call sympathetic intelligence—which concerns the ability of agents to share aspects
of their generative models, to take the perspective of other agents, and to understand the
world in ways similar enough to enable coordinated action. Whether the emergence of shared
intelligence in such a network structure entails the emergence of a new, collective mind is an
open question.
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Current state-of-the-art AI systems are largely “black boxes.” Such an approach to the
design of AI ultimately puts severe limits on its transparency, explainability, and auditability.
In addition, their capacity to engage in genuine collaboration with humans and other AI
is limited, because they lack the ability to take the perspective of another. Moving to
multi-scale active inference offers a number of technical advantages that may help address
these problems. One is that leveraging explicit generative models, which carve the world
into discrete latent states, may help us to identify and quantify bias in our models. Such
architectures feature increased auditability, in that they are explicitly queryable and their
inferences can be examined forensically—allowing us to address these biases directly. Shared
generative models also effectively equip AI with a theory of mind, facilitating perspective-
taking and allowing for genuinely dyadic interactions.

Much like a brain, with its many layers and connections, the multi-scale architecture for
collective intelligence that we propose could be equipped with nodes and layers to enable a
kind of collective self-monitoring and self-organisation of salience. However, this raises the
question of authority and power: this kind of approach to the design of AI must account for
the plurality and vulnerability of individual perspectives, and the need to understand and
counterbalance potential abuses of power. More broadly and perhaps more fundamentally,
we note that the approach to AI that we have presented here does not obviate the dangers
associated with bias in AI technologies, especially when deployed at industrial scale in com-
mercial settings, e.g., [145]. The general idea is that the deployment of AI technologies in
societies that have preexisting hierarchies of power and authority can have problematic con-
sequences. For example, discriminatory bias encoded in data will result in unfairly biased AI
systems (e.g., [146]) regardless of the specific technologies used to build that AI. It is highly
probable that the use of AI technologies premised on such data will sustain social biases and
practices that are harmful, or may represent future harm, the consequences of which are not
yet fully known—or may be unknowable—regardless of the intentions of the creators. These
concerns are well founded and cannot be resolved through narrowly technical means. As
such, some combination of novel social policies, government regulations, and ethical norms
are likely to be required to ensure that these new technologies harness and reflect our most
essential and persistent values.

We are not pessimistic. Nature provides us with endless demonstrations of the success of
emergent, shared intelligence across systems at every scale. Looking back to the elegant de-
sign of the human body, we find bountiful examples of diverse systems of nested intelligences
working together to seek out a dynamic harmony and balance. As an integrated system, the
body is capable of achieving multi-scale homeostasis and allostasis, notably via the incredible
coordination and communicative power of the nervous system, allowing it to adapt to novel
environmental conditions and to regulate its needs in real time. We reiterate our conviction
that the design of AI should be informed by, and aligned with, these time-tested methods
and design principles. Furthermore, we believe that the class of sympathetic and shared
intelligences that we have described in this paper offers a responsible and desirable path to
achieving the highest technical and ethical goals for AI, based on a design of ecosystems of
intelligence from first principles.
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6 Conclusion: Our proposal for stages of development for
active inference as an artificial intelligence technology

The aim of this white paper was to present a vision of research and development in the field
of artificial intelligence for the next decade (and beyond). We suggested that AGI and ASI
will emerge from the interaction of intelligences networked into a hyper-spatial web or ecosys-
tem of natural and artificial intelligence. We have proposed active inference as a technology
uniquely suited to the collaborative design of an ecosystem of natural and synthetic sense-
making, in which humans are integral participants—what we call shared intelligence. The
Bayesian mechanics of intelligent systems that follows from active inference led us to define
intelligence operationally, as the accumulation of evidence for an agent’s generative model of
their sensed world—also known as self-evidencing. This self-evidencing can be implemented
using message passing or belief propagation on (factor) graphs or networks. Active inference
is uniquely suited to this task because it leads to a formal account of collective intelligence.
We considered the kinds of communication protocols that must be developed to enable such
an ecosystem of intelligences, and argued that such considerations motivate the develop-
ment of a generalized, hyper-spatial modeling language and transaction protocol. We suggest
that establishing such common languages and protocols is a key enabling step towards an
ecosystem of naturally occurring and artificial intelligences.

In closing, we provide a roadmap for developing intelligent artifacts and message pass-
ing schemes as methods or tools for the common good. This roadmap is inspired by the
technology readiness levels (TRLs) that have been adopted as a framework for understand-
ing progress in technical research and development by institutions such as the European
Commission, the International Organization for Standardization (ISO), and the National
Aeronautics and Space Administration agency (NASA).

6.1 Stages of development for active inference

S0: Systemic Intelligence. This is contemporary state-of-the-art AI; namely, universal
function approximation—mapping from input or sensory states to outputs or action states—
that optimizes some well-defined value function or cost of (systemic) states. Examples include
deep learning, Bayesian reinforcement learning, etc.

S1: Sentient Intelligence. Sentient behavior or active inference based on belief updating
and propagation (i.e., optimizing beliefs about states as opposed to states per se); where
“sentient” means “responsive to sensory impressions.”8. This entails planning as inference;
namely, inferring courses of action that maximize expected information gain and expected
value, where value is part of a generative (i.e., world) model; namely, prior preferences. This

8To preempt any worries, we emphasize that we do not mean that sentient intelligent systems are nec-
essarily conscious, in the sense of having qualitative states of awareness; e.g., as the word was used in the
recent controversy surrounding Google’s AI system LaMDA [147]. It is standard to use the word “sentient”
to mean “responsive to sensory impressions” in the literature on the free energy principle; e.g., in [39]
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kind of intelligence is both information-seeking and preference-seeking. It is quintessentially
curious.

S2: Sophisticated Intelligence. Sentient behavior—as defined under S1—in which plans
are predicated on the consequences of action for beliefs about states of the world, as opposed
to states per se. I.e., a move from “what will happen if I do this?” to “what will I believe or
know if I do this?” [148, 149]. This kind of inference generally uses generative models with
discrete states that “carve nature at its joints”; namely, inference over coarse-grained repre-
sentations and ensuing world models. This kind of intelligence is amenable to formulation
in terms of modal logic, quantum computation, and category theory. This stage corresponds
to “artificial general intelligence” in the popular narrative about the progress of AI.

S3: Sympathetic (or Sapient) Intelligence. The deployment of sophisticated AI to
recognize the nature and dispositions of users and other AI and—in consequence—recognize
(and instantiate) attentional and dispositional states of self; namely, a kind of minimal
selfhood (which entails generative models equipped with the capacity for Theory of Mind).
This kind of intelligence is able to take the perspective of its users and interaction partners—it
is perspectival, in the robust sense of being able to engage in dyadic and shared perspective-
taking.

S4: Shared (or Super) Intelligence. The kind of collective that emerges from the
coordination of Sympathetic Intelligence (as defined in S3) and their interaction partners or
users—which may include naturally occurring intelligence such as ourselves, but also other
sapient artifacts. This stage corresponds, roughly speaking, to “artificial super-intelligence”
in the popular narrative about the progress of AI—with the important distinction that we
believe that such intelligence will emerge from dense interactions between agents networked
into a hyper-spatial web. We believe that the approach that we have outlined here is the most
likely route toward this kind of hypothetical, planetary-scale, distributed super-intelligence
[150].

6.2 Implementation

A: Theoretical. The basis of belief updating (i.e., inference and learning) is underwritten
by a formal calculus (e.g., Bayesian mechanics), with clear links to the physics of self-
organization of open systems far from equilibrium.

B: Proof of principle. Software instances of the formal (mathematical) scheme, usually
on a classical (i.e., von Neumann) architecture.

C: Deployment at scale. Scaled and efficient application of the theoretical principles
(i.e., methods) in a real-world setting (e.g., edge-computing, robotics, variational message
passing on the web, etc.)
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D: Biomimetic hardware. Implementations that elude the von Neumann bottleneck, on
biomimetic or neuromorphic architectures. E.g., photonics, soft robotics, and belief propa-
gation: i.e., message passing of the sufficient statistics of (Bayesian) beliefs.

Stage Theoretical Proof of principle Deployment at scale Biomimetic Timeframe

S1: Sentient Established1,2 Established3 Provisional4 Aspirational 2 years

S2: Sophisticated Established5 Provisional6 Aspirational 4 years

S3: Sympathetic Provisional7 Aspirational 8 years

S4: Shared Provisional8,9 Aspirational 16 years

Table 1: Stages of AI premised on active inference.
1 Friston, K.J. A free energy principle for a particular physics. doi:10.48550/arXiv.1906.10184 (2019).[38]
2 Ramstead, M.J.D. et al. On Bayesian Mechanics: A Physics of and by Beliefs. 10.48550/arXiv.2205.11543

(2022).[2]
3 Parr, T., Pezzulo, G. & Friston, K.J. Active Inference: The Free Energy Principle in Mind, Brain, and

Behavior. (MIT Press, 2022). doi:10.7551/mitpress/12441.001.0001.[151]
4 Mazzaglia, P., Verbelen, T., Catal, O. & Dhoedt, B. The Free Energy Principle for Perception and Action:

A Deep Learning Perspective. Entropy 24, 301, doi:10.3390/e24020301 (2022).[152]
5 Da Costa, L. et al. Active inference on discrete state-spaces: A synthesis. Journal of Mathematical Psy-

chology 99, 102447, doi:10.1016/j.jmp.2020.102447 (2020).[153]
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8 Friston, K.J., Levin, M., Sengupta, B. & Pezzulo, G. Knowing one’s place: a free-energy approach to
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A Appendix: Applications of active inference

Table A.1: Examples of Active Inference implementations. From Da Costa et
al. (2020) [1]
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Initial formulation of active
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Optimal control

Application of KL or risk
sensitive control in an
engineering benchmark—the
mountain car problem.

Çatal et al. (2019) [3]
and Friston, Adams et
al. (2012) [4]

Evidence
accumulation

Illustrating the role of evidence
accumulation in decision-making
through an urns task.

FitzGerald, Moran et
al. (2015) [5] and
FitzGerald,
Schwartenbeck et
al. (2015) [6]

Psychopathology Simulation of addictive choice
behaviour.

Schwartenbeck,
FitzGerald, Mathys,
Dolan, Wurst et
al. (2015) [7]

Dopamine

The precision of beliefs about
policies provides a plausible
description of dopaminergic
discharges.

Friston et al. (2014) [8]
and FitzGerald, Dolan et
al. (2015) [9]

Functional magnetic
resonance imaging

Empirical prediction and
validation of dopaminergic
discharges.

Schwartenbeck,
FitzGerald, Mathys,
Dolan, Friston (2015) [10]

Maximal utility
theory

Evidence in favor of surprise
minimization as opposed to
utility maximization in human
decision-making.

Schwartenbeck,
FitzGerald, Mathys,
Dolan, Kronbichler et
al. (2015) [11]

Social cognition
Examining the effect of prior
preferences on interpersonal
inference.

Moutoussis et al. (2014)
[12]
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Exploration-
exploitation
dilemma

Casting behavior as expected
free energy minimizing accounts
for epistemic and pragmatic
choices.

Friston et al. (2015) [13]

Habit learning and
action selection

Formulating learning as an
inferential process and action
selection as Bayesian model
averaging.

Friston et al. (2016) [14]
and FitzGerald et
al. (2014) [15]

Scene construction
and anatomy of time

Mean-field approximation for
multi-factorial hidden states,
enabling high dimensional
representations of the
environment.

Friston and Buzsáki
(2016) [16] and Mirza et
al. (2016) [17]

Electrophysiological
responses

Synthesizing various in-silico
neurophysiological responses via
a gradient descent on free
energy. E.g., place-cell activity,
mismatch negativity,
phase-precession, theta
sequences, theta–gamma
coupling and dopaminergic
discharges.

Friston, FitzGerald et
al. (2017) [18]

Structure learning,
curiosity and insight

Simulation of artificial curiosity
and abstract rule learning.
Structure learning via Bayesian
model reduction.

Friston, Lin et al. (2017)
[19]

Hierarchical
temporal
representations

Generalization to hierarchical
generative models with deep
temporal structure and
simulation of reading.

Friston et al. (2018b) [20]
and Parr and Friston
(2017b) [21]

Computational
neuropsychology

Simulation of visual neglect,
hallucinations, and prefrontal
syndromes under alternative
pathological priors.

Benrimoh et al. (2018)
[22], Parr, Benrimoh et
al. (2018) [23], Parr and
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Parr, Rees et al. (2018)
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al. (2019) [26]
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Neuromodulation

Use of precision parameters to
manipulate exploration during
saccadic searches; associating
uncertainty with cholinergic and
noradrenergic systems.

Parr and Friston (2017a)
[27], Parr and Friston
(2019) [28], Sales et
al. (2019) [29] and
Vincent et al. (2019) [30]
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movements

Mixed generative models
combining discrete and
continuous states to implement
decisions through movement.

Friston, Parr et al. (2017)
[31] and Parr and Friston
(2018d) [32]

Planning, navigation
and niche
construction

Agent induced changes in
environment (generative
process); decomposition of goals
into subgoals.

Bruineberg et al. (2018)
[33], Constant et
al. (2018) [34] and
Kaplan and Friston
(2018a) [35]

Atari games
Active inference compares
favorably to reinforcement
learning in the game of Doom.

Cullen et al. (2018) [36]

Machine learning
Scaling active inference to more
complex machine learning
problems.

Tschantz et al. (2019)
[37]
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